Characterization of bivariate hierarchical quartic box splines on a three-directional grid

نویسندگان

  • Nelly Villamizar
  • Angelos Mantzaflaris
  • Bert Jüttler
چکیده

We consider the adaptive refinement of bivariate quartic C-smooth box-spline spaces on the three-directional (type-I) grid G. The polynomial segments of these box splines belong to a certain subspace of the space of quartic polynomials, which will be called the space of special quartics. Given a finite sequence (G)l=0,...,N of dyadically refined grids, we obtain a hierarchical grid by selecting cells from each level such that their closure covers the entire domain Ω, which is a bounded subset of R. A suitable selection procedure allows to define a basis spanning a hierarchical box spline space. As our main result, we derive a characterization of this space. More precisely, under certain mild assumptions on hierarchical grid, the hierarchical spline space is shown to contain all C-smooth functions whose restrictions to the cells of the hierarchical grid are special quartic polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for generating B-nets and graphically displaying spline surfaces on three- and four-directional meshes

This paper is concerned with the description of an algorithm for generating the B-nets of box splines and an algorithm based on subdivision of these B-nets for graphically displaying spline surfaces on a three-or four-directional mesh. The combination of these two algorithms is shown to compare favorably over the other existing algorithms for this purpose. 0 1 x1. Introduction It is well known ...

متن کامل

Refinable bivariate quartic and quintic C2-splines for quadrilateral subdivisions

Refinable compactly supported bivariate C quartic and quintic spline function vectors on the four-directional mesh are introduced in this paper to generate matrix-valued templates for approximation and Hermite interpolatory surface subdivision schemes, respectively, for both the √ 2 and 1-to-4 split quadrilateral topological rules. These splines have their full local polynomial preservation ord...

متن کامل

A constructive algebraic strategy for interpolatory subdivision schemes induced by bivariate box splines

This paper describes an algebraic construction of bivariate interpolatory subdivision masks induced by three-directional box spline subdivision schemes. Specifically, given a three-directional box spline, we address the problem of defining a corresponding interpolatory subdivision scheme by constructing an appropriate correction mask to convolve with the three-directional box spline mask. The p...

متن کامل

Some smoothness conditions and conformality conditions for bivariate quartic and quintic splines

This paper is concerned with a study of some new formulations of smoothness conditions and conformality conditions for multivariate splines in terms of B-net representation. In the bivariate setting, a group of new parameters of bivariate quartic and quintic polynomials over a planar simplex is introduced, new formulations of smoothness conditions of bivariate quartic C1 splines and quintic C2 ...

متن کامل

Fortran Subroutines for B - nets of Box

We describe an algorithm to compute the B-nets of bivariate box splines on a three{ or four{directional mesh. Two pseudo Fortran programs for those B-nets are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2016